Share
VIDEOS 1 TO 50
CAMWorks - Virtual Machine Simulator
CAMWorks - Virtual Machine Simulator
Published: 2017/10/24
Channel: GoEngineer
Eureka Virtual Machining
Eureka Virtual Machining
Published: 2012/06/28
Channel: eurekacnc
WHAT IS - EUREKA VIRTUAL MACHINING ?
WHAT IS - EUREKA VIRTUAL MACHINING ?
Published: 2017/05/12
Channel: Eureka Virtual Machining
Virtual Machining and Optimisation Workshop
Virtual Machining and Optimisation Workshop
Published: 2018/06/13
Channel: AMRC
MILL-TURN - INDEX G200_Eureka Virtual Machining 8.5
MILL-TURN - INDEX G200_Eureka Virtual Machining 8.5
Published: 2017/08/03
Channel: Eureka Virtual Machining
EUREKA VIRTUAL MACHINING - 8.1
EUREKA VIRTUAL MACHINING - 8.1
Published: 2017/05/15
Channel: Eureka Virtual Machining
Virtual machining takes off - METALWORKING WORLD 2/11
Virtual machining takes off - METALWORKING WORLD 2/11
Published: 2011/05/05
Channel: Sandvik Coromant
CNC MACHINING_GROB G550 - Eureka Virtual Machining 8.5
CNC MACHINING_GROB G550 - Eureka Virtual Machining 8.5
Published: 2018/02/12
Channel: Eureka Virtual Machining
Eureka Virtual Machining
Eureka Virtual Machining
Published: 2015/09/29
Channel: Roboris Deutschland
Industry 4.0 for Machining Operations [MTD MFG Investigates]
Industry 4.0 for Machining Operations [MTD MFG Investigates]
Published: 2017/10/16
Channel: MTD Manufacturing
Paul Fabrications - Virtual Machining
Paul Fabrications - Virtual Machining
Published: 2011/06/16
Channel: dexterpaulfabs
FROM TDM TO EUREKA Virtual Machining 8.5
FROM TDM TO EUREKA Virtual Machining 8.5
Published: 2018/01/09
Channel: Eureka Virtual Machining
Re-Up: MILL TURN - INDEX G200_Eureka Virtual Machining
Re-Up: MILL TURN - INDEX G200_Eureka Virtual Machining
Published: 2018/07/23
Channel: Eureka Virtual Machining
MACHpro Virtual Machining
MACHpro Virtual Machining
Published: 2011/06/15
Channel: SmartMachining
CHECKitB4 - virtual machining DMU-60
CHECKitB4 - virtual machining DMU-60
Published: 2018/01/26
Channel: PimpelGmbH
ROBOT MILLING #002 - Eureka Virtual Machining 8.1
ROBOT MILLING #002 - Eureka Virtual Machining 8.1
Published: 2017/05/18
Channel: Eureka Virtual Machining
FROM CAM SYSTEM TO ROBOT _ Eureka Virtual Machining 8.5
FROM CAM SYSTEM TO ROBOT _ Eureka Virtual Machining 8.5
Published: 2018/06/27
Channel: Eureka Virtual Machining
EUREKA Virtual Machining
EUREKA Virtual Machining
Published: 2009/10/05
Channel: meboll75
Advanced Virtual Manufacturing Lab - Machining a part on the virtual machine
Advanced Virtual Manufacturing Lab - Machining a part on the virtual machine
Published: 2013/05/09
Channel: asciencetutor
MASTERCAM to EUREKA - PLUG-IN _ Eureka Virtual Machining 8.5
MASTERCAM to EUREKA - PLUG-IN _ Eureka Virtual Machining 8.5
Published: 2018/01/22
Channel: Eureka Virtual Machining
IMTS 2018 _ Eureka Virtual Machining 8.5
IMTS 2018 _ Eureka Virtual Machining 8.5
Published: 2018/09/10
Channel: Eureka Virtual Machining
Симуляция обработки в EUREKA VIRTUAL MACHINING
Симуляция обработки в EUREKA VIRTUAL MACHINING
Published: 2018/01/22
Channel: Roboris RUSSIA
Симуляция обработки с помощью Eureka Virtual Machining
Симуляция обработки с помощью Eureka Virtual Machining
Published: 2018/01/22
Channel: Roboris RUSSIA
CMS in Eureka Virtual Machining
CMS in Eureka Virtual Machining
Published: 2008/10/09
Channel: Luca Fly
ROBOT WELDING  #001 - Eureka Virtual Machining 8.1
ROBOT WELDING #001 - Eureka Virtual Machining 8.1
Published: 2017/05/10
Channel: Eureka Virtual Machining
MILL-TURN - CTX1250_Eureka Virtual Machining 8.1
MILL-TURN - CTX1250_Eureka Virtual Machining 8.1
Published: 2017/03/21
Channel: Eureka Virtual Machining
ESPRIT to EUREKA - PLUG-IN _Eureka Virtual Machining 8.5
ESPRIT to EUREKA - PLUG-IN _Eureka Virtual Machining 8.5
Published: 2018/01/18
Channel: Eureka Virtual Machining
CHECKitB4 - 100% Virtual Machining, 100% CNC-Steuerung, 100% Digitaler Zwilling
CHECKitB4 - 100% Virtual Machining, 100% CNC-Steuerung, 100% Digitaler Zwilling
Published: 2018/07/31
Channel: PimpelGmbH
CHECKitB4 - 100% Virtual Machining, 100% CNC-Steuerung, 100% Digitaler Zwilling
CHECKitB4 - 100% Virtual Machining, 100% CNC-Steuerung, 100% Digitaler Zwilling
Published: 2018/08/23
Channel: PimpelGmbH
Frezarko-tokarka (mill-turn)  GROB G350   Eureka Virtual Machining v.8
Frezarko-tokarka (mill-turn) GROB G350 Eureka Virtual Machining v.8
Published: 2017/05/16
Channel: ZW3D 3D_MASTER
ROBOT KAWASAKI - ZW3D TO EUREKA _ Eureka Virtual Machining 8.5
ROBOT KAWASAKI - ZW3D TO EUREKA _ Eureka Virtual Machining 8.5
Published: 2018/08/20
Channel: Eureka Virtual Machining
Symulator centrum frezarskiego - 5AX MACHINE   CMS ARES Eureka Virtual Machining v.8
Symulator centrum frezarskiego - 5AX MACHINE CMS ARES Eureka Virtual Machining v.8
Published: 2017/05/16
Channel: ZW3D 3D_MASTER
5AX MACHINE - "CMS ARES"_Eureka Virtual Machining 8.1
5AX MACHINE - "CMS ARES"_Eureka Virtual Machining 8.1
Published: 2017/05/02
Channel: Eureka Virtual Machining
SIEMENS NX 11 - MACHINE TOOL BUILDER
SIEMENS NX 11 - MACHINE TOOL BUILDER
Published: 2016/10/27
Channel: Krzysztof Gad
Eureka Virtual Machining - Создание кинематики станка Mikron
Eureka Virtual Machining - Создание кинематики станка Mikron
Published: 2018/02/05
Channel: Roboris RUSSIA
HYBRID ADDITIVE/SUBTRACTIVE MACHINING_Eureka Virtual Machining 8.1
HYBRID ADDITIVE/SUBTRACTIVE MACHINING_Eureka Virtual Machining 8.1
Published: 2017/04/26
Channel: Eureka Virtual Machining
CHECKitB4 - 100% Virtual Machining, 100% CNC-Steuerung, 100% Digitaler Zwilling
CHECKitB4 - 100% Virtual Machining, 100% CNC-Steuerung, 100% Digitaler Zwilling
Published: 2018/08/17
Channel: PimpelGmbH
Virtual Machine - Deco Line - English
Virtual Machine - Deco Line - English
Published: 2008/10/01
Channel: TornosTube
COSCOM Virtual Machining live im Alzmetall-Praxis-Einsatz
COSCOM Virtual Machining live im Alzmetall-Praxis-Einsatz
Published: 2016/11/08
Channel: COSCOM Computer GmbH
Virtual Machining by Mohsen Soori
Virtual Machining by Mohsen Soori
Published: 2016/12/08
Channel: Mohsen Soori
Machining VR - Mecanizando en realidad virtual
Machining VR - Mecanizando en realidad virtual
Published: 2017/06/23
Channel: Beitxu Studios
AMRC and Twin-Control Virtual Machining Conference (Sheffield, UK, March 1 2018).
AMRC and Twin-Control Virtual Machining Conference (Sheffield, UK, March 1 2018).
Published: 2018/05/14
Channel: Twin Control
CAD-Terv Ltd. - Virtual machining environment in CATIA
CAD-Terv Ltd. - Virtual machining environment in CATIA
Published: 2013/09/24
Channel: CNCMedia
ALLUMINIUM MILLING_ROBOT #003_Eureka Virtual Machining 8.5
ALLUMINIUM MILLING_ROBOT #003_Eureka Virtual Machining 8.5
Published: 2017/08/29
Channel: Eureka Virtual Machining
CHECKitB4 - 100% Virtual Machining, 100% CNC-Steuerung, 100% Digitaler Zwilling
CHECKitB4 - 100% Virtual Machining, 100% CNC-Steuerung, 100% Digitaler Zwilling
Published: 2018/08/30
Channel: PimpelGmbH
LLVM High Level Virtual Machine (1 of 2)
LLVM High Level Virtual Machine (1 of 2)
Published: 2007/05/30
Channel: malanon
AMRC and Twin-Control Virtual Machining Conference (Sheffield, UK, March 1 2018).
AMRC and Twin-Control Virtual Machining Conference (Sheffield, UK, March 1 2018).
Published: 2018/06/08
Channel: Twin Control
Spawanie robotem ROBOT WELDING  Eureka Virtual Machining 8 1
Spawanie robotem ROBOT WELDING Eureka Virtual Machining 8 1
Published: 2017/05/18
Channel: ZW3D 3D_MASTER
Tutorial virtual simulation of Milling machining using CATIA
Tutorial virtual simulation of Milling machining using CATIA
Published: 2017/07/06
Channel: Prashant Anerao
CAMWorks - Airplane machining (Volumill and Virtual Machine)
CAMWorks - Airplane machining (Volumill and Virtual Machine)
Published: 2017/03/24
Channel: Cristi Moise
NEXT
GO TO RESULTS [51 .. 100]

WIKIPEDIA ARTICLE

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Virtual machining is the practice of using computers to simulate and model the use of machine tools for part manufacturing. Such activity replicates the behavior and errors of a real environment in virtual reality systems.[1] This can provide useful ways to manufacture products without physical testing on the shop floor. As a result, time and cost of part production can be decreased.[2]

Applications[edit]

Virtual machining provides various benefits:

  • Simulated machining process in virtual environments reveals errors without wasting materials, damaging machine tools, or putting workers at risk.[3]
  • A computer simulation helps improve accuracy in the produced part.[2]
  • Virtual inspection systems such as surface finish, surface metrology, and waviness can be applied to the simulated parts in virtual environments to increase accuracy.[4]
  • Systems can augment process planning of machining operations with regards to the desired tolerances of part designing.[5]
  • Virtual machining system can be used in process planning of machining operations by considering the most suitable steps of machining operations with regard to the time and cost of part manufacturing.[6]
  • Optimization techniques can be applied to the simulated machining process to increase efficiency of parts production.[7]
  • Finite element method (FEM) can be applied to the simulated machining process in virtual environments to analyze stress and strain of the machine tool, workpiece and cutting tool.[8]
  • Accuracy of mathematical error modeling in prediction of machined surfaces can be analyzed by using the virtual machining systems.[9]
  • Machining operations of flexible materials can be analyzed in virtual environments to increase accuracy of part manufacturing.[10]
  • Vibrations of machine tools as well as possibility of chatter along cutting tool paths in machining operations can be analyzed by using simulated machining operations in virtual environments.[11]
  • Time and cost of accurate production can be decreased by applying rules of production process management to the simulated manufacturing process in the virtual environment.[12]
  • Feed rate scheduling systems based on virtual machining can also be presented to increase accuracy as well as efficiency of part manufacturing.[13]
  • Material removal rate in machining operations of complex surfaces can be simulated in virtual environments for analysis and optimization.[14]
  • Efficiency of part manufacturing can be improved by analyzing and optimizing production methods.[15]
  • Errors in actual machined parts can be simulated in virtual environments for analysis and compensation.[2]
  • Simulated machining centers in virtual environments can be connected by the network and Internet for remote analyis and modification.[16]
  • Elements and structures of machine tools such as spindle, rotation axis, moving axes, ball screw, numerical control unit, electric motors (step motor and servomotor), bed and et al. can be simulated in virtual environments so they can be analyzed and modified. As a result, optimized versions of machine tool elements can boost levels of technology in part manufacturing.[17]
  • Geometry of cutting tools can be analyzed and modified as a result of simulated cutting forces in virtual environments. Thus, machining time as well as surface roughness can be minimized and tool life can be maximized due to decreasing cutting forces by modified geometries of cutting tools. Also, the modified versions of cutting tool geometries with regards to minimizing cutting forces can decrease cost of cutting tools by presenting a wider range of acceptable materials for cutting tools such as high-speed steel, carbon tool steels, cemented carbide, ceramic, cermet and et al.[18]
  • The generated heat in engagement areas of cutting tool and workpiece can be simulated, analyzed, and decreased. Tool life can be maximized as a result of decreasing generated heat in engagement areas of cutting tool and workpiece.[19]
  • Machining strategies can be analyzed and modified in virtual environments in terms of collision detection processes.[20]
  • 3D vision of machining operations with errors of actual machined parts and tool deflection error in virtual environments can help designers as well as machining strategists to analyze and modify the process of part production.[21]
  • Virtual machining can augment the experience and training of novice machine tool operators in a virtual machining training system.[22]
  • To increase added value in processes of part production, energy consumption of machine tools can be simulated and analyzed in virtual environments by presenting an efficient energy use machine tool.[23]
  • Machining strategies of freeform surfaces can be analyzed and optimized in virtual environments to increase accuracy of part manufacturing.[14]

Future research works[edit]

Some suggestions for the future studies in virtual machining systems are presented as:

  • Machining operations of new alloy can be simulated in virtual environments for study. As a result, deformation, surface properties and residue stress of new alloy can be analyzed and modified.
  • New material of cutting tool can be simulated and analyzed in virtual environments. Thus, tool deflection error of new cutting tools along machining paths can be studied without the need of actual machining operations.
  • Deformation and deflections of large workpieces can be simulated and analyzed in virtual environments.
  • Machining operations of expensive materials such as gold as well as super alloys can be simulated in virtual environments to predict real machining conditions without the need of shop floor testing.

References[edit]

  1. ^ Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen (November 2013). "Dimensional and geometrical errors of three-axis CNC milling machines in a virtual machining system"Paid subscription required. Computer Aided Design 45. 45 (11): 1306–1313. doi:10.1016/j.cad.2013.06.002. ISSN 0010-4485 – via ScienceDirect. 
  2. ^ a b c Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen (October 2014). "Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines"Paid subscription required. Journal of Manufacturing Systems. 33 (4): 498–507. doi:10.1016/j.jmsy.2014.04.007. ISSN 0278-6125 – via ScienceDirect. 
  3. ^ Altintas, Y.; Brecher, C.; Weck, M.; Witt, S. (2005). "Virtual Machine Tool"Paid subscription required. CIRP Annals - Manufacturing Technology. 54 (2): 115–138. doi:10.1016/S0007-8506(07)60022-5. ISSN 0007-8506 – via ScienceDirect. 
  4. ^ Cheung, C.F.; Lee, W.B. (2001). "A framework of a virtual machining and inspection system for diamond turning of precision optics"Paid subscription required. Journal of Materials Processing Technology. 119 (1-3): 27–40. doi:10.1016/S0924-0136(01)00893-7. ISSN 0924-0136 – via ScienceDirect. 
  5. ^ Ong, T.S.; Hinds, B.K. (May 2003). "The application of tool deflection knowledge in process planning to meet geometric tolerances"Paid subscription required. International Journal of Machine Tools and Manufacture. 43 (7): 731–737. doi:10.1016/S0890-6955(03)00027-0. ISSN 0890-6955 – via ScienceDirect. 
  6. ^ NARITA, Hirohisa; Shirase, Keiichi; Wakamatsu, Hidefumi; Arai, Eiji (2000). "Pre-Process Evaluation of End Milling Operation Using Virtual Machining Simulator". JSME International Journal. C Mechanical Systems, Machine Elements and Manufacturing. 43: 492–497. doi:10.1299/jsmec.43.492. ISSN 1344-7653. 
  7. ^ Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen (28 May 2016). "Tool Deflection Error of Three-Axis Computer Numerical Control Milling Machines, Monitoring and Minimizing by a Virtual Machining System"Paid subscription required. Journal of Manufacturing Science and Engineering. ASME. 138 (8): 081005–081005–11. doi:10.1115/1.4032393. 
  8. ^ Tani, Giovanni; Bedini, Raffaele; Fortunato, Alessandro; Mantega, Claudio (13 February 2007). "Dynamic Hybrid Modeling of the Vertical Z Axis in a High-Speed Machining Center: Towards Virtual Machining"Paid subscription required. Journal of Manufacturing Science and Engineering. ASME. 129 (4): 780–788. doi:10.1115/1.2738097. 
  9. ^ Soori, Mohsen; Arezoo, Behrooz; Habibi, Mohsen (May 2017). "Accuracy analysis of tool deflection error modeling in prediction of milled surfaces by a virtual machining system"Paid subscription required. International Journal of Computer Applications in Technology. 55. ISSN 0952-8091. 
  10. ^ Ratchev, S.; Liu, S.; Becker, A.A. (15 May 2005). "Error compensation strategy in milling flexible thin-wall parts"Paid subscription required. Journal of Materials Processing Technology. 162–163: 673–681. doi:10.1016/j.jmatprotec.2005.02.192. ISSN 0924-0136 – via ScienceDirect. 
  11. ^ Li, Hongqi; Shin, Yung C. (February 2009). "Integration of thermo-dynamic spindle and machining simulation models for a digital machining system"Paid subscription required. The International Journal of Advanced Manufacturing Technology. 40: 648–661. doi:10.1007/s00170-008-1394-8. ISSN 0268-3768 – via Springer Link. 
  12. ^ Fletcher, Craig; Ritchie, James; Lim, Theo; Sung, Raymond (October 2013). "The development of an integrated haptic VR machining environment for the automatic generation of process plans"Paid subscription required. Computers in Industry. 64: 1045–1060. doi:10.1016/j.compind.2013.07.005. ISSN 0166-3615 – via ScienceDirect. 
  13. ^ Erkorkmaz, Kaan; Yeung, Chi-Ho; Altintas, Yusuf (August 2006). "Virtual CNC system. Part II. High speed contouring application"Paid subscription required. International Journal of Machine Tools and Manufacture. 46: 1124–1138. doi:10.1016/j.ijmachtools.2005.08.001. ISSN 0890-6955 – via ScienceDirect. 
  14. ^ a b Merdol, S.Doruk; Altintas, Yusuf (August 2008). "Virtual cutting and optimization of three-axis milling processes"Paid subscription required. International Journal of Machine Tools and Manufacture. 48 (10): 1063–1071. doi:10.1016/j.ijmachtools.2008.03.004. ISSN 0890-6955 – via ScienceDirect. 
  15. ^ Palanisamy, P.; Rajendran, I.; Shanmugasundaram, S. (2007). "Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations"Paid subscription required. The International Journal of Advanced Manufacturing Technology. 32 (7): 644–655. doi:10.1007/s00170-005-0384-3. ISSN 0268-3768 – via Springer Link. 
  16. ^ Abdul Kadir, Aini; Xu, Xun; Hämmerle, Enrico (June 2011). "Virtual machine tools and virtual machining—A technological review"Paid subscription required. Robotics and Computer-Integrated Manufacturing. 27 (3): 494–508. doi:10.1016/j.rcim.2010.10.003. ISSN 0736-5845 – via Springer Link. 
  17. ^ Altintas, Y.; Kersting, P.; Biermann, D.; Budak, E.; Denkena, B.; Lazoglu, I. (2014). "Virtual process systems for part machining operations"Paid subscription required. CIRP Annals - Manufacturing Technology. 63 (2): 585–605. doi:10.1016/j.cirp.2014.05.007. ISSN 0007-8506 – via ScienceDirect. 
  18. ^ "MACHpro: THE VIRTUAL MACHINING SYSTEM". malinc.com. Manufacturing Automation Laboratories. Retrieved 17 November 2016. 
  19. ^ Abukhshim, N.A.; Mativenga, P.T.; Sheikh, M.A. (June 2006). "Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining"Paid subscription required. International Journal of Machine Tools and Manufacture. 46 (7–8): 782–800. doi:10.1016/j.ijmachtools.2005.07.024. ISSN 0890-6955 – via ScienceDirect. 
  20. ^ Karabagli, Bilal; Simon, Thierry; Orteu, Jean-José (9 July 2015). "A new chain-processing-based computer vision system for automatic checking of machining set-up application for machine tools safety"Paid subscription required. The International Journal of Advanced Manufacturing Technology. 82 (9): 1547–1568. doi:10.1007/s00170-015-7438-y – via Springer Link. 
  21. ^ Altintas, Yusuf (2016). "Virtual High Performance Machining". Procedia CIRP. 46: 372–378. doi:10.1016/j.procir.2016.04.154. ISSN 2212-8271 – via ScienceDirect. 
  22. ^ Zhang, J.; Ong, S.K.; Nee, A.Y.C. (2012). "Design and Development of an in situ Machining Simulation System Using Augmented Reality Technology". Procedia CIRP. 3: 185–190. doi:10.1016/j.procir.2012.07.033. ISSN 2212-8271 – via ScienceDirect. 
  23. ^ Pelliccia, Luigi; Klimant, Philipp; Schumann, Marco; Pürzel, Franziska; Wittstock, Volker; Putz, Matthias (2016). "Energy Visualization Techniques for Machine Tools in Virtual Reality". Procedia CIRP. 41: 329–333. doi:10.1016/j.procir.2015.10.013. ISSN 2212-8271 – via ScienceDirect. 

External links[edit]

Disclaimer

None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.

All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.

The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.

Powered by YouTube
Wikipedia content is licensed under the GFDL and (CC) license