Jump to navigation
Jump to search
## Contents

## Abstract examples[edit]

### The Ali Baba cave[edit]

### Two balls and the colour-blind friend[edit]

## Definition[edit]

## Practical examples[edit]

### Discrete log of a given value[edit]

#### Short summary[edit]

### Hamiltonian cycle for a large graph[edit]

#### Completeness[edit]

#### Zero-knowledge[edit]

#### Soundness[edit]

## Variants of zero-knowledge[edit]

## Zero knowledge types[edit]

## Applications[edit]

### Authentication systems[edit]

### Ethical behavior[edit]

### Nuclear disarmament[edit]

### Blockchains[edit]

## History[edit]

## See also[edit]

## References[edit]

## External links[edit]

In cryptography, a **zero-knowledge proof** or **zero-knowledge protocol** is a method by which one party (the prover) can prove to another party (the verifier) that they know a value *x*, without conveying any information apart from the fact that they know the value *x*. The essence of zero-knowledge proofs is that it is trivial to prove that one possesses knowledge of certain information by simply revealing it; the challenge is to prove such possession without revealing the information itself or any additional information.^{[1]}

If proving a statement requires that the prover possess some secret information, then the verifier will not be able to prove the statement to anyone else without possessing the secret information.
The statement being proved must include the assertion that the prover has such knowledge, but not the knowledge itself. Otherwise, the statement would not be proved in zero-knowledge because it provides the verifier with additional information about the statement by the end of the protocol.
A *zero-knowledge proof of knowledge* is a special case when the statement consists *only* of the fact that the prover possesses the secret information.

Interactive zero-knowledge proofs require interaction between the individual (or computer system) proving their knowledge and the individual validating the proof.
^{[1]}

A protocol implementing zero-knowledge proofs of knowledge must necessarily require interactive input from the verifier. This interactive input is usually in the form of one or more challenges such that the responses from the prover will convince the verifier if and only if the statement is true, i.e., if the prover *does* possess the claimed knowledge.
If this were not the case, the verifier could record the execution of the protocol and replay it to convince someone else that they possess the secret information. The new party's acceptance is either justified since the replayer *does* possess the information (which implies that the protocol leaked information, and thus, is not proved in zero-knowledge), or the acceptance is spurious, i.e., was accepted from someone who does not actually possess the information.

Some forms of non-interactive zero-knowledge proofs exist,^{[2]}^{[3]} but the validity of the proof relies on computational assumptions (typically the assumptions of an ideal cryptographic hash function).

There is a well-known story presenting the fundamental ideas of zero-knowledge proofs, first published by Jean-Jacques Quisquater and others in their paper "How to Explain Zero-Knowledge Protocols to Your Children".^{[4]} It is common practice to label the two parties in a zero-knowledge proof as Peggy (the **prover** of the statement) and Victor (the **verifier** of the statement).

In this story, Peggy has uncovered the secret word used to open a magic door in a cave. The cave is shaped like a ring, with the entrance on one side and the magic door blocking the opposite side. Victor wants to know whether Peggy knows the secret word; but Peggy, being a very private person, does not want to reveal her knowledge (the secret word) to Victor or to reveal the fact of her knowledge to the world in general.

They label the left and right paths from the entrance A and B. First, Victor waits outside the cave as Peggy goes in. Peggy takes either path A or B; Victor is not allowed to see which path she takes. Then, Victor enters the cave and shouts the name of the path he wants her to use to return, either A or B, chosen at random. Providing she really does know the magic word, this is easy: she opens the door, if necessary, and returns along the desired path.

However, suppose she did not know the word. Then, she would only be able to return by the named path if Victor were to give the name of the same path by which she had entered. Since Victor would choose A or B at random, she would have a 50% chance of guessing correctly. If they were to repeat this trick many times, say 20 times in a row, her chance of successfully anticipating all of Victor's requests would become vanishingly small (about one in a million).

Thus, if Peggy repeatedly appears at the exit Victor names, he can conclude that it is very probable—astronomically probable—that Peggy does in fact know the secret word.

One side note with respect to third-party observers: even if Victor is wearing a hidden camera that records the whole transaction, the only thing the camera will record is in one case Victor shouting "A!" and Peggy appearing at A or in the other case Victor shouting "B!" and Peggy appearing at B. A recording of this type would be trivial for any two people to fake (requiring only that Peggy and Victor agree beforehand on the sequence of A's and B's that Victor will shout). Such a recording will certainly never be convincing to anyone but the original participants. In fact, even a person who was present as an observer *at the original experiment* would be unconvinced, since Victor and Peggy might have orchestrated the whole "experiment" from start to finish.

Further notice that if Victor chooses his A's and B's by flipping a coin on-camera, this protocol loses its zero-knowledge property; the on-camera coin flip would probably be convincing to any person watching the recording later. Thus, although this does not reveal the secret word to Victor, it does make it possible for Victor to convince the world in general that Peggy has that knowledge—counter to Peggy's stated wishes. However, digital cryptography generally "flips coins" by relying on a pseudo-random number generator, which is akin to a coin with a fixed pattern of heads and tails known only to the coin's owner. If Victor's coin behaved this way, then again it would be possible for Victor and Peggy to have faked the "experiment", so using a pseudo-random number generator would not reveal Peggy's knowledge to the world in the same way using a flipped coin would.

Notice that Peggy could prove to Victor that she knows the magic word, without revealing it to him, in a single trial. If both Victor and Peggy go together to the mouth of the cave, Victor can watch Peggy go in through A and come out through B. This would prove with certainty that Peggy knows the magic word, without revealing the magic word to Victor. However, such a proof could be observed by a third party, or recorded by Victor and such a proof would be convincing to anybody. In other words, Peggy could not refute such proof by claiming she colluded with Victor, and she is therefore no longer in control of who is aware of her knowledge.

This example requires two identical objects with different colours such as two coloured balls. It was first demonstrated live by software engineers Konstantinos Chalkias and Mike Hearn at a blockchain related conference in September 2017 and is inspired by the work of Prof. Oded Goldreich, who used two differently coloured cards.

Imagine your friend is red-green colour-blind (while you are not) and you have two balls: one red and one green, but otherwise identical. To your friend they seem completely identical and he is skeptical that they are actually distinguishable. You want to *prove to him they are in fact differently-coloured*, but nothing else; in particular, you do not want to reveal which one is the red and which is the green ball.

Here is the proof system. You give the two balls to your friend and he puts them behind his back. Next, he takes one of the balls and brings it out from behind his back and displays it. He then places it behind his back again and then chooses to reveal just one of the two balls, picking one of the two at random with equal probability. He will ask you, "Did I switch the ball?" This whole procedure is then repeated as often as necessary.

By looking at their colours, you can of course say with certainty whether or not he switched them. On the other hand, if they were the same colour and hence indistinguishable, there is no way you could guess correctly with probability higher than 50%.

If you and your friend repeat this "proof" multiple times (e.g. 100 times), your friend should become convinced ("completeness") that the balls are indeed differently coloured; otherwise, the probability that you would have randomly succeeded at identifying all the switch/non-switches is close to zero ("soundness").

The above proof is *zero-knowledge* because your friend never learns which ball is green and which is red; indeed, he gains no knowledge about how to distinguish the balls.

A zero-knowledge proof must satisfy three properties:

**Completeness**: if the statement is true, the honest verifier (that is, one following the protocol properly) will be convinced of this fact by an honest prover.**Soundness**: if the statement is false, no cheating prover can convince the honest verifier that it is true, except with some small probability.**Zero-knowledge**: if the statement is true, no verifier learns anything other than the fact that the statement is true. In other words, just knowing the statement (not the secret) is sufficient to imagine a scenario showing that the prover knows the secret. This is formalized by showing that every verifier has some*simulator*that, given only the statement to be proved (and no access to the prover), can produce a transcript that "looks like" an interaction between the honest prover and the verifier in question.

The first two of these are properties of more general interactive proof systems. The third is what makes the proof zero-knowledge.

Zero-knowledge proofs are not proofs in the mathematical sense of the term because there is some small probability, the *soundness error*, that a cheating prover will be able to convince the verifier of a false statement. In other words, zero-knowledge proofs are probabilistic "proofs" rather than deterministic proofs. However, there are techniques to decrease the soundness error to negligibly small values.

A formal definition of zero-knowledge has to use some computational model, the most common one being that of a Turing machine. Let ,, and be Turing machines. An interactive proof system with for a language is zero-knowledge if for any probabilistic polynomial time (PPT) verifier there exists a PPT simulator such that

where is a record of the interactions between and . The prover is modeled as having unlimited computation power (in practice, P usually is a probabilistic Turing machine). Intuitively, the definition states that an interactive proof system is zero-knowledge if for any verifier there exists an efficient simulator (depending on ) that can reproduce the conversation between and on any given input. The auxiliary string in the definition plays the role of "prior knowledge" (including the random coins of ). The definition implies that cannot use any prior knowledge string to mine information out of its conversation with , because if is also given this prior knowledge then it can reproduce the conversation between and just as before.

The definition given is that of perfect zero-knowledge. Computational zero-knowledge is obtained by requiring that the views of the verifier and the simulator are only computationally indistinguishable, given the auxiliary string.

We can apply these ideas to a more realistic cryptography application. Peggy wants to prove to Victor that she knows the discrete log of a given value in a given group.^{[5]}

For example, given a value , a large prime and a generator , she wants to prove that she knows a value such that , without revealing . Indeed, knowledge of could be used as a proof of identity, in that Peggy could have such knowledge because she chose a random value that she didn't reveal to anyone, computed and distributed the value of to all potential verifiers, such that at a later time, proving knowledge of is equivalent to proving identity as Peggy.

The protocol proceeds as follows: in each round, Peggy generates a random number , computes and discloses this to Victor. After receiving , Victor randomly issues one of the following two requests: he either requests that Peggy discloses the value of , or the value of . With either answer, Peggy is only disclosing a random value, so no information is disclosed by a correct execution of one round of the protocol.

Victor can verify either answer; if he requested , he can then compute and verify that it matches . If he requested , he can verify that is consistent with this, by computing and verifying that it matches . If Peggy indeed knows the value of , she can respond to either one of Victor's possible challenges.

If Peggy knew or could guess which challenge Victor is going to issue, then she could easily cheat and convince Victor that she knows when she does not: if she knows that Victor is going to request , then she proceeds normally: she picks , computes and discloses to Victor; she will be able to respond to Victor's challenge. On the other hand, if she knows that Victor will request , then she picks a random value , computes , and discloses to Victor as the value of that he is expecting. When Victor challenges her to reveal , she reveals , for which Victor will verify consistency, since he will in turn compute , which matches , since Peggy multiplied by the inverse of .

However, if in either one of the above scenarios Victor issues a challenge other than the one she was expecting and for which she manufactured the result, then she will be unable to respond to the challenge under the assumption of infeasibility of solving the discrete log for this group. If she picked and disclosed , then she will be unable to produce a valid that would pass Victor's verification, given that she does not know . And if she picked a value that poses as , then she would have to respond with the discrete log of the value that she disclosed – but Peggy does not know this discrete log, since the value C she disclosed was obtained through arithmetic with known values, and not by computing a power with a known exponent.

Thus, a cheating prover has a 0.5 probability of successfully cheating in one round. By executing a large enough number of rounds, the probability of a cheating prover succeeding can be made arbitrarily low.

Peggy proves to know the value of x (for example her password).

- Peggy calculates first for one time the value and transfer the value to Victor.
- Peggy repeatedly calculates a random value and . She transfers the value to Victor.
- Victor asks Peggy to calculate and transfer the value or simply to transfer the value . in the first case Victor verifies . In the second case he verifies .

The value can be seen as the encrypted value of . If is truly random, equally distributed between zero and , this does not leak any information about (see one-time pad).

The following scheme is due to Manuel Blum.^{[6]}

In this scenario, Peggy knows a Hamiltonian cycle for a large graph *G*. Victor knows *G* but not the cycle (e.g., Peggy has generated *G* and revealed it to him.) Finding a Hamiltonian cycle given a large graph is believed to be computationally infeasible, since its corresponding decision version is known to be NP-complete. Peggy will prove that she knows the cycle without simply revealing it (perhaps Victor is interested in buying it but wants verification first, or maybe Peggy is the only one who knows this information and is proving her identity to Victor).

To show that Peggy knows this Hamiltonian cycle, she and Victor play several rounds of a game.

- At the beginning of each round, Peggy creates
*H*, a graph which is isomorphic to*G*(i.e.*H*is just like*G*except that all the vertices have different names). Since it is trivial to translate a Hamiltonian cycle between isomorphic graphs with known isomorphism, if Peggy knows a Hamiltonian cycle for*G*she also must know one for*H*. - Peggy commits to
*H*. She could do so by using a cryptographic commitment scheme. Alternatively, she could number the vertices of*H*, then for each edge of*H*write on a small piece of paper containing the two vertices of the edge and then put these pieces of paper face down on a table. The purpose of this commitment is that Peggy is not able to change*H*while at the same time Victor has no information about*H*. - Victor then randomly chooses one of two questions to ask Peggy. He can either ask her to show the isomorphism between
*H*and*G*(see graph isomorphism problem), or he can ask her to show a Hamiltonian cycle in*H*. - If Peggy is asked to show that the two graphs are isomorphic, she first uncovers all of
*H*(e.g. by turning over all pieces of papers that she put on the table) and then provides the vertex translations that map*G*to*H*. Victor can verify that they are indeed isomorphic. - If Peggy is asked to prove that she knows a Hamiltonian cycle in
*H*, she translates her Hamiltonian cycle in*G*onto*H*and only uncovers the edges on the Hamiltonian cycle. This is enough for Victor to check that*H*does indeed contain a Hamiltonian cycle.

If Peggy does know a Hamiltonian cycle in G, she can easily satisfy Victor's demand for either the graph isomorphism producing H from G (which she had committed to in the first step) or a Hamiltonian cycle in H (which she can construct by applying the isomorphism to the cycle in *G*).

Peggy's answers do not reveal the original Hamiltonian cycle in *G*. Each round, Victor will learn only *H'*s isomorphism to *G* or a Hamiltonian cycle in *H*. He would need both answers for a single *H* to discover the cycle in *G*, so the information remains unknown as long as Peggy can generate a distinct *H* every round. If Peggy does not know of a Hamiltonian Cycle in *G*, but somehow knew in advance what Victor would ask to see each round then she could cheat. For example, if Peggy knew ahead of time that Victor would ask to see the Hamiltonian Cycle in *H* then she could generate a Hamiltonian cycle for an unrelated graph. Similarly, if Peggy knew in advance that Victor would ask to see the isomorphism then she could simply generate an isomorphic graph *H* (in which she also does not know a Hamiltonian Cycle). Victor could simulate the protocol by himself (without Peggy) because he knows what he will ask to see. Therefore, Victor gains no information about the Hamiltonian cycle in *G* from the information revealed in each round.

If Peggy does not know the information, she can guess which question Victor will ask and generate either a graph isomorphic to *G* or a Hamiltonian cycle for an unrelated graph, but since she does not know a Hamiltonian cycle for *G* she cannot do both. With this guesswork, her chance of fooling Victor is 2^{−n}, where `n` is the number of rounds. For all realistic purposes, it is infeasibly difficult to defeat a zero knowledge proof with a reasonable number of rounds in this way.

Different variants of zero-knowledge can be defined by formalizing the intuitive concept of what is meant by the output of the simulator "looking like" the execution of the real proof protocol in the following ways:

- We speak of
*perfect zero-knowledge*if the distributions produced by the simulator and the proof protocol are distributed exactly the same. This is for instance the case in the first example above. *Statistical zero-knowledge*^{[7]}means that the distributions are not necessarily exactly the same, but they are statistically close, meaning that their statistical difference is a negligible function.- We speak of
*computational zero-knowledge*if no efficient algorithm can distinguish the two distributions.

- Zero knowledge Proof of knowledge: the knowledge is hidden in the exponent such as the example shown above.
- Pairing based cryptography: given f(x) and f(y), without knowing x & y, is able to compute f(x*y).
- Witness indistinguishable proof: verifiers can not know which witness is used to produce the proof.
- Multi party computation: while each party can kept their secret, they together produce a result.
- Ring signature: outsiders have no idea which key is used to sign.

Research in zero-knowledge proofs has been motivated by authentication systems where one party wants to prove its identity to a second party via some secret information (such as a password) but doesn't want the second party to learn anything about this secret. This is called a "zero-knowledge proof of knowledge". However, a password is typically too small or insufficiently random to be used in many schemes for zero-knowledge proofs of knowledge. A zero-knowledge password proof is a special kind of zero-knowledge proof of knowledge that addresses the limited size of passwords.

One of the uses of zero-knowledge proofs within cryptographic protocols is to enforce honest behavior while maintaining privacy. Roughly, the idea is to force a user to prove, using a zero-knowledge proof, that its behavior is correct according to the protocol.^{[8]} Because of soundness, we know that the user must really act honestly in order to be able to provide a valid proof. Because of zero knowledge, we know that the user does not compromise the privacy of its secrets in the process of providing the proof.

In 2016, the Princeton Plasma Physics Laboratory and Princeton University demonstrated a novel technique that may have applicability to future nuclear disarmament talks. It would allow inspectors to confirm whether or not an object is indeed a nuclear weapon without recording, sharing or revealing the internal workings which might be secret.^{[9]}

ZKPs can be used to guarantee that transactions are valid despite the fact that information about the sender, the recipient and other transaction details remain hidden.^{[10]}

Zero-knowledge proofs were first conceived in 1985 by Shafi Goldwasser, Silvio Micali, and Charles Rackoff in their paper "The Knowledge Complexity of Interactive Proof-Systems".^{[8]} This paper introduced the **IP** hierarchy of interactive proof systems (*see interactive proof system*) and conceived the concept of *knowledge complexity*, a measurement of the amount of knowledge about the proof transferred from the prover to the verifier. They also gave the first zero-knowledge proof for a concrete problem, that of deciding quadratic nonresidues mod *m* (this more or less means that there isn't any number *x* where is "equivalent" to some given number). Together with a paper by László Babai and Shlomo Moran, this landmark paper invented interactive proof systems, for which all five authors won the first Gödel Prize in 1993.

In their own words, Goldwasser, Micali, and Rackoff say:

Of particular interest is the case where this additional knowledge is essentially 0 and we show that [it] is possible to interactively prove that a number is quadratic non residue mod

mreleasing 0 additional knowledge. This is surprising as no efficient algorithm for deciding quadratic residuosity modmis known whenm’s factorization is not given. Moreover, all knownNPproofs for this problem exhibit the prime factorization ofm. This indicates that adding interaction to the proving process, may decrease the amount of knowledge that must be communicated in order to prove a theorem.

The quadratic nonresidue problem has both an **NP** and a **co-NP** algorithm, and so lies in the intersection of **NP** and **co-NP**. This was also true of several other problems for which zero-knowledge proofs were subsequently discovered, such as an unpublished proof system by Oded Goldreich verifying that a two-prime modulus is not a Blum integer.^{[11]}

Oded Goldreich, Silvio Micali, and Avi Wigderson took this one step further, showing that, assuming the existence of unbreakable encryption, one can create a zero-knowledge proof system for the NP-complete graph coloring problem with three colors. Since every problem in **NP** can be efficiently reduced to this problem, this means that, under this assumption, all problems in **NP** have zero-knowledge proofs.^{[12]} The reason for the assumption is that, as in the above example, their protocols require encryption. A commonly cited sufficient condition for the existence of unbreakable encryption is the existence of one-way functions, but it is conceivable that some physical means might also achieve it.

On top of this, they also showed that the graph nonisomorphism problem, the complement of the graph isomorphism problem, has a zero-knowledge proof. This problem is in **co-NP**, but is not currently known to be in either **NP** or any practical class. More generally, Russell Impagliazzo and Moti Yung as well as Ben-Or et al. would go on to show that, also assuming one-way functions or unbreakable encryption, that there are zero-knowledge proofs for *all* problems in **IP** = **PSPACE**, or in other words, anything that can be proved by an interactive proof system can be proved with zero knowledge.^{[13]}^{[14]}

Not liking to make unnecessary assumptions, many theorists sought a way to eliminate the necessity of one way functions. One way this was done was with *multi-prover interactive proof systems* (see interactive proof system), which have multiple independent provers instead of only one, allowing the verifier to "cross-examine" the provers in isolation to avoid being misled. It can be shown that, without any intractability assumptions, all languages in **NP** have zero-knowledge proofs in such a system.^{[15]}

It turns out that in an Internet-like setting, where multiple protocols may be executed concurrently, building zero-knowledge proofs is more challenging. The line of research investigating concurrent zero-knowledge proofs was initiated by the work of Dwork, Naor, and Sahai.^{[16]} One particular development along these lines has been the development of witness-indistinguishable proof protocols. The property of witness-indistinguishability is related to that of zero-knowledge, yet witness-indistinguishable protocols do not suffer from the same problems of concurrent execution.^{[17]}

Another variant of zero-knowledge proofs are non-interactive zero-knowledge proofs. Blum, Feldman, and Micali showed that a common random string shared between the prover and the verifier is enough to achieve computational zero-knowledge without requiring interaction.^{[2]}^{[3]}

In September 2017, the first ZKP was conducted on the Byzantium fork of Ethereum.^{[18]}

- Arrow information paradox
- Cryptographic protocol
- Feige–Fiat–Shamir identification scheme
- Proof of knowledge
- Topics in cryptography
- Witness-indistinguishable proof
- Zero-knowledge password proof
- Non-interactive zero-knowledge proof

- ^
^{a}^{b}"What is a zero-knowledge proof and why is it useful?". 16 November 2017. - ^
^{a}^{b}Blum, Manuel; Feldman, Paul; Micali, Silvio (1988).*Non-Interactive Zero-Knowledge and Its Applications*.*Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC 1988)*. pp. 103–112. doi:10.1145/62212.62222. ISBN 978-0897912648. - ^
^{a}^{b}Wu, Huixin; Wang, Feng (2014). "A Survey of Noninteractive Zero Knowledge Proof System and Its Applications".*The Scientific World Journal*.**2014**: 1–7. doi:10.1155/2014/560484. PMC 4032740. PMID 24883407. **^**Quisquater, Jean-Jacques; Guillou, Louis C.; Berson, Thomas A. (1990). "How to Explain Zero-Knowledge Protocols to Your Children" (PDF).*Advances in Cryptology – CRYPTO '89: Proceedings*.**435**: 628–631.**^**Chaum, David; Evertse, Jan-Hendrik; van de Graaf, Jeroen (1987).*An Improved Protocol for Demonstrating Possession of Discrete Logarithms and Some Generalizations*.*Advances in Cryptology – EuroCrypt '87: Proceedings*. Lecture Notes in Computer Science.**304**. pp. 127–141. doi:10.1007/3-540-39118-5_13. ISBN 978-3-540-19102-5.**^**Blum, Manuel (1986). "How to Prove a Theorem So No One Else Can Claim It" (PDF).*ICM Proceedings*: 1444–1451.**^**Sahai, Amit; Vadhan, Salil (1 March 2003). "A complete problem for statistical zero knowledge" (PDF).*Journal of the ACM*.**50**(2): 196–249. CiteSeerX 10.1.1.4.3957. doi:10.1145/636865.636868. Archived (PDF) from the original on 2015-06-25.- ^
^{a}^{b}Goldwasser, S.; Micali, S.; Rackoff, C. (1989), "The knowledge complexity of interactive proof systems" (PDF),*SIAM Journal on Computing*,**18**(1): 186–208, doi:10.1137/0218012, ISSN 1095-7111 **^**"PPPL and Princeton demonstrate novel technique that may have applicability to future nuclear disarmament talks - Princeton Plasma Physics Lab".*www.pppl.gov*.**^**Orcutt, Mike. "A mind-bending cryptographic trick promises to take blockchains mainstream".*MIT Technology Review*. Retrieved 2017-12-18.**^**Goldreich, Oded (1985). "A zero-knowledge proof that a two-prime moduli is not a Blum integer".*Unpublished Manuscript*.**^**Goldreich, Oded; Micali, Silvio; Wigderson, Avi (1991). "Proofs that yield nothing but their validity".*Journal of the ACM*.**38**(3): 690–728. CiteSeerX 10.1.1.420.1478. doi:10.1145/116825.116852.**^**Russell Impagliazzo, Moti Yung: Direct Minimum-Knowledge Computations. CRYPTO 1987: 40-51**^**Ben-Or, Michael; Goldreich, Oded; Goldwasser, Shafi; Hastad, Johan; Kilian, Joe; Micali, Silvio; Rogaway, Phillip (1990). "Everything provable is provable in zero-knowledge". In Goldwasser, S.*Advances in Cryptology—CRYPTO '88*. Lecture Notes in Computer Science.**403**. Springer-Verlag. pp. 37–56.**^**Ben-or, M.; Goldwasser, Shafi; Kilian, J.; Wigderson, A. (1988). "Multi prover interactive proofs: How to remove intractability assumptions" (PDF).*Proceedings of the 20th ACM Symposium on Theory of Computing*: 113–121.**^**Dwork, Cynthia; Naor, Moni; Sahai, Amit (2004). "Concurrent Zero Knowledge".*Journal of the ACM*.**51**(6): 851–898. CiteSeerX 10.1.1.43.716. doi:10.1145/1039488.1039489.**^**Feige, Uriel; Shamir, Adi (1990).*Witness Indistinguishable and Witness Hiding Protocols*.*Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing (STOC)*. pp. 416–426. CiteSeerX 10.1.1.73.3911. doi:10.1145/100216.100272. ISBN 978-0897913614.**^**"Ethereum Upgrade Byzantium Is Live, Verifies First ZK-Snark Proof".*Cointelegraph*. Retrieved 2017-12-18.

- SZK in the Complexity Zoo
- Applied Kid Cryptography – A simple explanation of zero-knowledge proofs using Where's Waldo? as an example
- A gentle introduction to zero-knowledge proofs with applications to cryptography
- How to construct zero-knowledge proof systems for NP
- An efficient non-interactive statistical zero-knowledge proof system for quasi-safe prime products
- A tutorial by Oded Goldreich on zero knowledge proofs
- Salil Vadhan, Vadhan's phd thesis on statistical zero knowledge
- Theory of Computing Course, Cornell University 2009, Zero knowledge proofs
- Ali Baba's Cave as told by Steve Gibson on TWiT show Security Now Episode 363 Wednesday August 1, 2012
- Demonstrate how Zero-Knowledge Proofs work without using maths
- The Bitcoin's Zero knowledge proof to binding

None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.

All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.

The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.

Wikipedia content is licensed under the GFDL and (CC) license